Alkane – Moleküle

gasförmige Alkane
Methan, Ethan,Propan und Butan

Methan CH4

Ethan C2H6

Propan C3H8

Butan C4H10

flüssige Alkane
Pentan, Hexan, Oktan… bis Heptadekan

Pentan C5H12

Hexan C6H14

Heptan C7H16

Oktan C8H18

Nonan C9H20

Dekan C10H22

die ebenfalls flüssigen Undekan C11H24 und Dodekan C12H26 folgen …

Feste Alkane

Oktadekan C18H38

Loading

Schwefelsäure

Das Schwefelsäuremolekül \( H_2SO_4 \) mit dem zentralen Schwefelatom, umgeben von 4 Sauerstoffatomen zerfällt in Wasser in das aggressive – hoch reaktive – Ion \( H^+ \) , das Wasserstoffion (auch Proton genannt) und das Sulfation \( SO_4^{2-} \) , das typische 2-fach negativ geladene Ion der Schwefelsäuresalze.

Schwefelquelle an einem Kratersee eines Vulkans. Hier bildet sich aus den Oxiden freie Schwefelsäure im Seewasser.

Eigenschaften:

96%ige konzentrierte H2SO4 ist eine klare, ätzende,  farb- und geruchlose, sehr ölige (hochviskose), stark hygroskopische (wasserziehende) Flüssigkeit, die mit Wasser unter starker Wärmeentwicklung mischbar ist. Hier ist wie bei allen Säuren unbedingt die Verdünnungsregel einzuhalten, da es sonst zu gefährlichen Verspritzungen kommt. In Wasser gelöst, existiert die Schwefelsäure in Form ihrer Ionen (H+ )Wasserstoffion und und (SO42– ) Sulfation , in die sie zerfällt(dissoziiert).

Schwefelsäure dissoziiert 2-stufig:

  1. Bildung des Hydrogensulfations

$$ H_2SO_4 \to H^+ + HSO_4^- $$

2. Bildung des Sulfations

$$ HSO_4^- \to H^+ + SO_4^{2-} $$

Vorkommen:

An vulkanischen Seen gibt es schwache Konzentrationen von Schwefelsäure. Dies ist neben Spuren von Schwefelsäure in einigen Insektensekreten das einzige natürliche Vorkommen. Die Schwefelsäure gehört wie die Salpetersäure zu den technischen Säuren.

Bedeutung und Verwendung:

Die Schwefelsäure ist eines der wichtigsten Produkte der chemischen Industrie. Sie wird „Blut der Chemie“ genannt. Die Weltproduktion von Schwefelsäure übersteigt die 140 Millionen-Tonnen-Marke. Das meist verwendete Verfahren, das Kontaktverfahren, nutzt Schwefel und ist eine deutsche Erfindung. Ein großer Teil der Schwefelsäure wird dazu verwendet, andere chemische Produkte herzustellen zum Beispiel mineralische Düngemittel (Ammonium- und Superphosphate), Farbstoffe, Sprengstoffe, Waschmittel und Arzneimittel. Die Schwefelsäure ist ein chemischer Grundstoff.
In der Glas-, Kunstseide- und Kunststoffindustrie, sowie in der Petrochemie und bei Dynamit spielt Schwefelsäure ebenfalls eine große Rolle. Mit ihr kann man zahlreiche andere  Säuren herstellen, zum Beispiel die Phosphorsäure (durch Reaktion mit Calciumphosphat) oder Fluorwasserstoffsäure, die auch Flusssäure genannt wird und als Lösungsmittel dient. 

Konzentrierte Schwefelsäure greift Kunststoffe an und zersetzt Zucker und Holz. So lässt sich auch der Aufbau von Zucker aus Kohlenstoff nachweisen. Die Reaktion mit Holz erfolgt in ähnlicher Weise, dabei kommt des auch zur Schwärzung jedoch nicht zu einer solchen Volumenvergrößerung.

Aber auch kohlenstoffbasierte Kunststoffe können der Schwefelsäure nicht widerstehen.

Loading

Salzsäure – Chlorwasserstoffsäure

Chlorwasserstoffsäure (Trivialname: Salzsäure) entsteht durch das Lösen der Moleküle des gasförmigen Chlorwasserstoffs (HCl) in Wasser . Dabei zerfällt das Molekül HCl in Ionen. Das Wasserstoffion (H+) und das Chloridion (Cl) bilden sich. Es entsteht eine saure Lösung, die immer das Wasserstoffion ( H+ ) enthält.
$$ HCl \to H^+ + Cl^- $$

Salzsäure wird bereits vor 2000 Jahren von Plinius erwähnt und dort mit der Gewinnung von Gold, Silber und einigen Mineralen in Zusammenhang gebracht. Sie ist eine technisch bedeutsame Säure, die in verdünnter Form im Magensaft aller Wirbeltiere vorkommt. Dort liefert sie eine saure Umgebung in der Mikroorganismen abgetötet und Eiweiße denaturiert(zerstört) werden und in der Verdauungsenzyme wie Pepsin optimal arbeiten.

Salzsäure ist eine wichtige Grundchemikalie der Industrie. Aus ihr werden viele andere Stoffe wie Eisen(III)-chlorid ), Calciumchlorid , Nickel(II)-chlorid und weitere Stoffe für die Galvanik und Batterieproduktion hergestellt. Sie wird in der Metallurgie für die Aufarbeitung von Erzen ebenso benötigt wie für das Ätzen , Beizen -besonders von Stahl – und Löten . Auch bei der Entfernung von Kalk und Mörtelresten im Bauwesen spielt Salzsäure eine zentrale Rolle.

gebeizt
loetnaht
building-2748840_1920
soldering-7897827_1920
motherboard-6616101_1920
brick-82918_1280
previous arrow
next arrow

Alle Bilder stammen von www.pixabay.com

Entstehung von Salzsäure:

507 Liter – das sind 815g – lösen sich begierig in einem einzigen Liter Wasser (bei 0°C) . Damit entsteht eine konzentrierte (rauchende) Salzsäure von 42% HCl Gehalt. Bei 20°C lösen sich noch 720g HCl in einem Liter Wasser.

Das begierige Auflösen in Wasser erzeugt im Rundkolben mit dem Chlorwasserstoffgas einen Unterdruck, der den Effekt des hereinströmenden Wassers zur Folge hat.

Im Labor wird diese stechend riechende Säure durch die Reaktion von Natriumchlorid(Kochsalz) mit Schwefelsäure gewonnen. Diese Reaktion ist nach ihrem Entdecker J.R. Glauber benannt.

Dazu wird hier Schwefelsäure in einer Glas mit Natriumchlorid -dem Salz der Salzsäure – gegeben. Das entstehende Gas wird in wässrige Unitest-Indikatorlösung eingeleitet. Die Rotfärbung zeigt an, dass sich das eingeleitete Gas mit dem Wasser zu einer Säure verbunden hat. Die stärkere Schwefelsäure hat das schwächere Salz der Salzsäure verdrängt!

Salzsäure ist eine ätzende, elektrisch leitende, stechend riechende Flüssigkeit, die den Indikator UNITEST rot färbt und mit unedlen Metallen reagiert.

Bei dieser Reaktion entstehen gasförmiger Wasserstoff und das jeweilige Chlorid, das Salz der Salzsäure. Magnesiumchlorid, Aluminiumchlorid, Zinkchlorid und Eisenchlorid. Gold und Silber reagieren nicht mit dieser Salzsäure.

$$ Mg + 2 HCl \to H_2 + MgCl_2 $$
$$ 2 Al + 6 HCl \to 3 H_2 + 2 AlCl_3 $$
$$ Zn + 2 HCl \to H_2 + ZnCl_2 $$
$$ Fe + 2 HCl \to H_2 + FeCl_2 $$

Loading

Die REDOX-Reaktion

Laufen Oxidation und Reduktion in einem System gleichzeitig ab, so nennt man diesen Prozess eine
REDuktions-OXidations –Reaktion oder kurz REDOX –Reaktion.

Voraussetzung ist, es gibt ein Oxid und einen Hilfsstoff, der den Sauerstoff des Oxids aufnehmen kann. So ein Stoff hilft, das Oxid zu reduzieren, er ist ein Reduktionsmittel und wird bei dem Prozess selbst oxidiert. Das Oxid selber ist also ein Oxidationsmittel.

Bei der RED-OX-Reaktion wird ein OXID reduziert und ein Hilfsstoff oxidiert.

Hier wird Eisenoxid durch Aluminium reduziert. Es entsteht Eisen.
Das Aluminium nimmt dabei den Sauerstoff auf und wird zu Aluminiumoxid oxidiert.

Hans GoldschmidtThermitverfahren

Die Versuche des Herrn Hans Goldschmidt zu Redox-Prozessen führten vor über 100 Jahren zu neuen Erkenntnissen in der Metallurgie . Dabei wurden Oxide von stark nachgefragten Metallen, wie Chrom, Mangan und dem Halbmetall Silizium in einer Hochtemperatur-Reaktion aus ihren Oxiden hergestellt.

So stellte Herr Goldschmidt ein Verfahren vor, mit dem es möglich sein sollte, eine gebrochene Eisenbahnschiene innerhalb weniger Arbeitsstunden zu schweißen. Für damalige Verhältnisse undenkbar, da der Austausch der Schiene Tage dauerte und zum „Schweißen“ flüssiger Stahl – also 1800°C heiß – vor Ort sein müsste. Eine Demonstration des Goldschmidtverfahrens fand weltweite Aufmerksamkeit.

Heute wird dieses Verfahren – das aluminothermische Schweißenweltweit eingesetzt, da es immer noch die einfachste Art ist, flüssigen Stahl in kleinen Portionen an jedem Ort der Welt herzustellen um Schienenstöße miteinander zu verbinden und Reparaturen durchzuführen.

Der Schienenstrang wird von einer Form umgeben und vorgewärmt. Dann wird das Reaktionsgefäß mit dem Eisenoxid- Aluminium – Gemisch aufgesetzt. Die Reaktion des Gemisches wird mit einer Zündkirsche aktiviert und läuft dann stark exotherm von selbst ab. Die Schlacke – das aluminiumoxidhaltige Nebenprodukt – läuft in die seitlichen Schalen. Später wird die Gussform entfernt und die Bruchstelle entgratet.

Weiter zur Eisengewinnung durch den Hochofenprozess…

REDOX-Reaktion von Kupferoxid + Kohlenstoff

Loading

1 11 12 13 14 15 24