Durchführung: Teste ein Gas durch Entzünden! Dazu ist es wichtig, dass sich der zu testende Stoff im Gefäß vor dem Entzünden mit bis Luft vermischen kann. Dieses Gemisch wird als Knallgas bezeichnet und reagiert explosiv. 1. Halte das Reagenzglas verschlossen mit deinem Daumen mit der Öffnung nach unten in Flammennähe, dass der Wasserstoff nicht entweichen kann. 2. Entferne den Daumen! (Reagenzglas offen) 3. Nähere dich ruhig der Flamme und erwarte eine deutlich hörbare Verpuffung!
Effekt/Erklärung: Vorhandenes Knallgas reagiert mit deutlich hörbarer Verpuffung. (Knall) Der hörbare Knall ist das Resultat der großen Detonationsgeschwindigkeit (2820 m/s) dieser Reaktion , die oberhalb der Schallgeschwindigkeit(ca. 340 m/s) liegt.
Durchführung: Teste ein Gas in einem Gefäß durch Eintauchen eines glimmenden Holzspans ! „Hält man einen Holzspan, dessen Flamme … unter Erhalt der Glut gelöscht wurde, glimmend in ein Gefäß mit dem zu überprüfenden Gas, so flammt der glimmende Holzspan bei Anwesenheit höherer Konzentrationen von Sauerstoff auf und brennt wieder.“ [www.wikipedia.org]
Effekt und Erklärung: Der Glimmspan flammt auf. Es bildet sich eine sichtbare Flamme. Vorhandener Sauerstoff fördert die Verbrennung so, dass aus dem Glimmen wieder eine Flamme wird. In reinem Sauerstoff laufen Oxidationen schneller/heftiger ab.(Aufflammen)
chemische Gleichung: Oxidation des Kohlenstoffs im Holzspan (Wird nicht benötigt!)
\( C + O_2 \longrightarrow CO_2\)
Störung des Versuchs:Lachgas zeigt dieses Verhalten ebenfalls
Durchführung: Teste ein Gas durch Einleiten in eine Lösung des Nachweismittels! Leitet man Kohlenstoffdioxid in eine Calciumhydroxidlösung(Kalkwasser) ein, so trübt sich die Lösung weiß. (Alternativ kann man auch in ein Gefäß mit Kalkwasser durch einen Strohhalm (o.ä.) pusten, um nachzuweisen, dass unsere Ausatemluft Kohlendioxid enthält)
Effekt und Erklärung: Die Flüssigkeit im Gefäß trübt sich weiß, später bildet sich ein Bodensatz. Eingebrachtes Kohlendioxid reagiert mit dem Calciumhydroxid der Lösung zu Calciumcarbonat. Dieses schwerlösliche Salz der Kohlensäure ist weiß und bildet nach Absinken einen Bodensatz im Gefäß.
Die Beweglichkeit freier Ionen in wässrigen Lösungen ermöglicht die Zugabe von Nachweismitteln, die mit den vorhandenen Ionen schwerlösliche Produkte bilden, die ausfallen oder die weiterhin Produkte bilden, die stoffliche(farbliche) oder mikroskopische Charakteristika aufweisen.
Wasserstoff– und Hydroxidion (H+ / OH–)
Nachweismittel:Indikatoren (wie UNITEST) Video Die charakteristischen Ionen der Säuren (H+) und der Basen(OH–) werden durch Zutropfen (ca. 5 Tr.) von Farbstoffen nachgewiesen, die das Vorhandensein der entsprechenden Ionen durch eine charakteristische Färbung anzeigen ( lat. indicare)
Effekt: charakteristische Färbung der Lösung je nach pH-Wert der Lösung
Die Farbreaktionen lassen sich wegen ihrer Komplexität von uns nicht als Gleichung darstellen!
Chloridionen (Cl–)
Nachweismittel :Silberionen (gelöstes Silbersalz, gewöhnlich Silbernitratlösung \( AgNO_3)\) ) Video (Diese Reaktion gilt für die anderen Halogenidionen (Ionen der Elemente der 7. HG) analog!)
Chloridionenin einer klaren Lösung können durch Zutropfen von Silberionen (ca. 5 Tr.) identifiziert werden die Bildung von schwerlöslichem, weißem Silberchlorid (AgCl) gilt als Nachweis für die Chloridionen.
Effekt: weißer Niederschlag von Silberchlorid – Fällungsreaktion
Ag+ + Cl– \( \longrightarrow \) AgCl
Die unbeteiligten Nitrationen ( \( NO_3^{-})\) bleiben unberücksichtigt.
Bromidionen ( Br–) und Iodidionen ( l–) bilden auch schwerlösliche Silbersalze. AgBr ist grau und AgI ist gelb!
Ag+ + Br– \( \longrightarrow \) AgBr
Ag+ + l– \( \longrightarrow \) Agl
Sulfationen (SO42–)
Nachweismittel : Bariumionen (gelöstes Bariumsalz, gewöhnlich Bariumchloridlösung \( BaCl_2)\) ) Video Sulfationenin einer klaren Lösung können durch Zutropfen von Bariumionen (ca. 5 Tr.) identifiziert werden die Bildung von schwerlöslichem, weißem Bariumsulfat(BaSO4) gilt als Nachweis für Sulfationen.
Effekt: weißer Niederschlag von Bariumsulfat – Fällungsreaktion
Ba2+ + SO42– \( \longrightarrow \) BaSO4
Silberionen (Ag+)
Nachweismittel : Chloridionen (gelöstes Chlorid)
Silberionenin einer klaren Lösung können durch Zutropfen von Chloridionen (ca. 5 Tr.) identifiziert werden die Bildung von schwerlöslichem, weißem Silberchlorid (AgCl) gilt als Nachweis für Silberionen.
Effekt: weißer Niederschlag von Silberchlorid
Ag+ + Cl– \( \longrightarrow \) AgCl
Bariumionen (Ba2+)
Nachweismittel : Sulfationen (gelöstes Sulfat)
(Diese Reaktion gilt für Calciumionen analog!)
Bariumionenin einer klaren Lösung können durch Zutropfen von Sulfationen (ca. 5 Tr.) identifiziert werden die Bildung von schwerlöslichem, weißem Bariumsulfat(BaSO4) gilt als Nachweis für Bariumionen.
Effekt: weißer Niederschlag von Bariumsulfat – Fällungsreaktion
Charakter einer Lösung , Wiederholung Ionennachweise (Chlorid/Sulfat)
Inhalt des ersten Versuches im Praktikum ist die Identifikation des Charakters einer Lösung. Lösungen können „Sauer“, „Basisch“ oder „Neutral“ sein und das ist vom Vorhandensein eines Überschusses an Wasserstoffionen oder Hydroxidionen abhängig. Diesen Überschuss zeigen Indikatoren wie der Universalindikator UNITEST an.
Auffrischung nötig? Hier gibt es Hilfe zu den „Ionennachweisen„
Der Indikator weist das Vorhandensein zweier Ionen nach. Das Wasserstoffion ( H+) der Säuren und das Hydroxidion (OH–) der Basen
Praktikum II
Ionennachweise – Identifizieren von Stoffen
Treffen in einer Lösung Ionenarten aufeinander, die ein unlösliches oder schwerlösliches Salz bilden, so verbinden diese sich sofort zu einem starken Ionengitter, welches man erst als Trübung der Lösung erkennt und später bei stärkerem Wachstum der Gitter als Flocken, die zu Boden sinken, wahrnimmt.
Dies wird Fällungsreaktion genannt und ist eine anerkannte Nachweismethode für Ionen. Wir kennen die Nachweise für Chloridionen und Sulfationen.
Auffrischung nötig? Den theoretischen Hintergrund hierfür findest Du hier!
Silberionen bilden mit Chloridionen ein schwerlösliches Salz (Silberchlorid).
Ag+ + Cl– ——> AgCl \( \downarrow \) (der Pfeil nach unten zeigt an, dass der Stoff „ausfällt“ also eine Trübung oder einen Bodensatz verursacht)
Der Sulfationen-Nachweis:
Mit Sulfationen… und Bariumionen verhält es sich ebenso. Aus diese beiden Ionen bilden starke Anziehungskräfte, die das Wasser nicht überwinden kann. Somit ist auch Bariumsulfat schwer löslich und bildet beobachtbare Niederschläge.
Gruppenreaktionen – Die Bildung von Säuren und Basen
Metalle und Nichtmetalle reagieren unterschiedlich stark mit Sauerstoff . so kommt es bei den Metallen zum typischen „Rosten“. Auch die Nichtmetalle zeigen diese Reaktion mit Sauerstoff. Allerding ist „Rost“ für die Produkte ein eher untypischer Name. Stoffe, die als Produkte einer Reaktion mit Sauerstoff entstehen, nennt man „Oxide“. Und diese Oxide reagieren mit Wasser. Diese Reaktion ist Gegenstand des dritten Versuches.
Die Reaktion von Metallen/Metalloxiden mit Wasser und die Reaktion von Nichtmetallen/Nichtmetalloxiden mit Wasser führen zur Bildung von Basen und Säuren.
Metalloxide + Wasser
Nichtmetalle + Wasser
Beispiel: Schwefel
Schwefel verbrennt zu Schwefeldioxid. Dieses stechend riechende Gas wird im Erlenmeyerkolben mit Unitestwasser eingeschlossen. Das sich lösende Gas bewirkt eine Reaktion in Wasser. Der Indikator signalisiert eine Säurebildung!
Es entsteht schweflige Säure!
…und nun noch Kohlendioxid und Wasser (mit Indikator)
In diesem Versuch verwendet der Durchführende „Bromthymolblau“, einen Indikator mit der folgenden Zuordnung pH-Wert —> Farbskala:
Praktikum IV
Die Neutralisation
Die Reaktion von Säuren mit Basen wird als Neutralisation bezeichnet. Beim Zusammentreffen der Ionen dieser Stoffe finden charakteristische Teilchenumlagerungen statt, die zu den Produkten Salz und Wasser führen. Die typischen Eigenschaften der Ausgangsstoffe verschwinden bei der Reaktion. Diese Reaktionen verlaufen exotherm.
ACHTUNG! Nicht nachmachen! Wir arbeiten tropfenweise und unter ständigem Rühren!
Praktikum V
Kohlendioxid – Herstellung und Nachweis
Kohlenstoffdioxid oder kurz Kohlendioxid wird von uns durch das Atmen produziert. Unsere Ausatemluft enthält 4% des Gases. Kohlendioxid ist inzwischen zu 0,04% in der Luft enthalten. Die chemischen Reaktionen von Kohlendioxid wie die Herstellung von \( CO_2 \) durch das Spalten eines Carbonates und der Nachweis des Gases (auch in der Ausatemluft) sind Gegenstand dieses Praktikums.
Wir unterscheiden den Nachweis von in Carbonaten gebundenem Kohlendioxid und gasförmigem Kohlendioxid.
Nachweis in der Atemluft mit Barytwasser Ba(OH)2
Nachweis in den Salzen der Kohlensäure (Carbonate) durch CO2-Austreibung mit stärkeren Säuren und Einleitung in Barytwasser Ba(OH)2 oder Kalkwasser Ca(OH)2
Praktikum VI
Wasserstoff Herstellung und Nachweis
Wasserstoff ist das häufigste Element des Universums. Diese Atome bilden Moleküle der Formel \( H_2 \). Wasserstoff ist in vielen Verbindungen (Wasser, Säuren, Basen, Kohlenwasserstoffen,…) enthalten und kann aus diesen gewonnen werden. Gegenstand dieses Praktikums ist die Herstellung von Wasserstoff aus einer Säure und sein Nachweis durch die Knallgasprobe.
Die Nähstoffe wurden im Lernbereich 1 der Klasse 10 umfangreich besprochen. Die Nachweise für Glucose, Stärke, Eiweiß und Fett sollen hier wiederholt werden.
Entdeckt wurde Wasserstoff vom englischen Chemiker und Physiker Henry Cavendish im Jahre 1766, als er mit Quecksilber und Säuren experimentierte. Als er die beiden Substanzen zusammenbrachte, entstanden im Gemisch kleine Gasbläschen.
Das Element (die Atomart) Wasserstoff (Symbol: H) bildet als Elementsubstanz ein geruchloses, farbloses und brennbares Gas, welches aus Molekülen mit der Formel H2 aufgebaut ist.
Wasserstoff hat eine Dichte von 0,084 g/l und ist damit das „leichteste“ Element. Bei -253°C wird es flüssig und erstarrt bei -259°C zum Feststoff. In Gemischen mit Luft oder Sauerstoff reagiert Wasserstoff explosionsartig. Dieses Gemisch nennt der Chemiker Knallgas. Bei höheren Temperaturen reagiert es mit vielen Metallen und Nichtmetallen heftig, wobei die entsprechenden Hydride gebildet werden. In Magnesiumhydrid \( (MgH_2) \) lösen sich 800 Liter Wasserstoff pro kg Hydrid. Damit wird es für die Nutzung als Energiespeicher interessant, da diese Energiedichte größer als die der gegenwärtigen Batterien ist. In Wasser ist Wasserstoff nur sehr wenig löslich. Eine besondere Eigenschaft von Wasserstoff ist, in Metalle einzudringen (diffundieren) und mit ihnen „nicht stöchiometrische Metallhydride“ zu bilden.
Cavendishs Apparatur zur Darstellung von Gasen findet in weiterentwickelter Form noch heute statt. Das pneumatische Auffangen von wenig wasserlöslichen Gasen ist ein Standardverfahren im Labor.
Die industrielle Produktion von Wasserstoff erfolgt zum großen Teil aus Erdöl, Erdgas und Biomasse. Dort wird im Dampfreforming -Verfahren der Wasserstoff gewonnen. Die Weltproduktion von Wasserstoff liegt bei ca. 350 Milliarden Tonnen pro Jahr. Wasserstoff wird für technische Hydrierungen und die verschiedensten chemischen Synthesen eingesetzt. Sein Einsatz zur Herstellung von Ammoniak hat die Hochdruckchemieindustrie begründet. Das Haber-Bosch-Verfahren zur Ammoniaksynthese wird seit 1913 betrieben. Auch in der Metallurgie kommt der Wasserstoff zum Einsatz. Zur Gewinnung von Metallen wie Wolfram und Chrom, werden die Erze mit Wasserstoff zu den Metallen reduziert.
36km weit flog der erste bemannte mit Wasserstoff gefüllte Ballon der Welt. Charles und Nicolas Robert flogen damit am 1. Dezember 1783, also 17 Jahre nach der Entdeckung des Elements. Bis 1937 wurde der Wasserstoff in immer größeren Projekten wie Ballons und später auch in Luftschiffen als Füllgas eingesetzt. Dabei kam es aber immer wieder zu Katastrophen, die Menschenleben kosteten. Diese gipfelten im Absturz des mit 200.000m³ Wasserstoff gefüllten Zeppelins „Hindenburg“.
Wasserstoff ist heute wieder im Gespräch nachdem dieser Stoff lange als zu gefährlich und unkontrollierbar galt. Nun tankt man Wasserstoff wieder in Busse, PKW und einige andere Fahrzeuge. Für Füllungen von Wetterbalonen und unbemannten Luftschiffen ist er immer noch eine preisgünstige Variante.
Wasserstoff ist natürlich im Chemieunterricht hergestellt eine spektakuläre Substanz, die mit der Knallgasprobe nachgewiesen werden kann. Die Bildung von explosiven Gemischen aus Sauerstoff der Luft und Wasserstoff wird hier genutzt.
Um die Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.
Diese Website verwendet Cookies, um Ihre Erfahrung beim Navigieren durch die Website zu verbessern. Von diesen werden die nach Bedarf kategorisierten Cookies in Ihrem Browser gespeichert, da sie für das Funktionieren der Grundfunktionen der Website unerlässlich sind. Wir verwenden auch Cookies von Drittanbietern, die uns helfen zu analysieren und zu verstehen, wie Sie diese Website nutzen. Diese Cookies werden nur mit Ihrer Zustimmung in Ihrem Browser gespeichert. Sie haben auch die Möglichkeit, diese Cookies abzulehnen. Wenn Sie sich jedoch von einigen dieser Cookies abmelden, kann dies Ihr Surferlebnis beeinträchtigen.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Dauer
Beschreibung
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.