Die organische Chemie – Die Kohlenwasserstoffe

J.J.Berzelius

1807 prägte Jöns Jacob Berzelius, Professor für Chemie und Pharmazie in Stockholm, den Begriff „Organische Chemie„. Dies geschah im Glauben, dass die Stoffe der lebenden Körper eine übernatürliche Kraft „vis vitalis“ in sich tragen. Niemand würde es je schaffen, Stoffe mit dieser innewohnenden Kraft im Chemielabor zu erschaffen!

1824 gelang die Sensation!


Friedrich Wöhler stellte Oxalsäure her, einen Stoff, der im Rhabarber zu finden ist. Da dies offenbar nicht reichte, synthetisierte er 1828 den vom Menschen produzierten Harnstoff aus einfachen anorganischen Zutaten wie Ammoniak.

Friedrich Wöhler

Stolz schrieb Wöhler an Berzelius:

„Lieber Herr Professor! Ich kann, so zu sagen, mein chemisches Wasser nicht halten und muss Ihnen sagen, dass ich Harnstoff machen kann, ohne dazu Nieren oder überhaupt ein Tier, sey es Mensch oder Hund, nöthig zu haben… Es bedurfte nun weiter Nichts als einer vergleichenden Untersuchung mit Pisse-Harnstoff, den ich in jeder Hinsicht selbst gemacht hatte.“ 

Der vollständige Briefwechsel hier!

Damit waren die Weichen für eine neue forschende und auch erzeugende Seite der Chemie gestellt. Es entstanden tausende Produkte wie die Industrie der Farben, Lacke, Waschmittel, Sprengstoffe, Arzneimittel, Kunststoffe und viel mehr!

Die Organische Chemie wird auch die Kohlenstoffchemie genannt.
Sie beschäftigt sich mit den Stoffen und den Prozessen des Lebens!

Video – Einführung in die organische Chemie – Werkstoffkunde

Die Chemie der Kohlenwasserstoffe

Chemische Verbindungen, die aus Kohlenstoff und Wasserstoff bestehen bilden die große Gruppe der Kohlenwasserstoffe (KW). Zu dieser Gruppe gehören ca. 2,5 Millionen bekannte Verbindungen. Sie sind in der Kohlenstoffchemie – der organischen Chemie – beheimatet, die von Antoine Laurent de Lavoisier  erstmals beschrieben und von Justus von Liebig und Friedrich Wöhler begründet wurde.

Die große Vielfalt der Kohlenstoffchemie beruht auf der 4-Bindigkeit des Kohlenstoffs. Kohlenstoff kann mit 4 weiteren Atomen eine Verbindung eingehen.

Er bildet ketten- und ringförmige und auch kombinierte Moleküle aus.

Hier das Modell von Methan \( CH_4 \) dem einfachsten Kohlenwasserstoff. Seine Moleküle bestehen nur aus einem Kohlenstoffatom, an das 4 Wasserstoffatome gebunden sind.

Schon der Austausch (die Substitution) dieser Wasserstoffatome liefert eine Großzahl von möglichen neuen Molekülen. Fremdatome wie Sauerstoff, Stickstoff, Schwefel, die Halogene und sogar Metallatome fächern das Repertoire der Möglichkeiten noch weiter auf.hier

Hier wurden 3 Wasserstoffatome durch Chlor ersetzt. Es entsteht Trichlormethan besser bekannt als Chloroform, ein frühes Narkosemittel (Anästhetikum).

Kettenförmige Moleküle kommen beispielsweise im Erdöl vor und können dort über 80 Kohlenstoffatome in einer Reihe aufweisen. Die Bindungswinkel aus dem Methan bleiben erhalten, so entstehen diese seltsamen Kohlenstoffskelette.

Dieser Stoff heißt Tetradekan und gehört zu den höheren Alkanen.

Ringförmige Strukturen findet man natürlich im Erdöl, aber auch in Alltagschemikalien wie Traubenzucker oder unserem Haushaltszucker sind so komplexe Moleküle zu finden.


Das ist das Molekül des Traubenzuckers ( \( C_6 H_{12} O_6 ) \). Die roten Kugeln stellen die Sauerstoffatome dar.
Die Besonderheit ist das Sauerstoffatom als Teil des Kohlenstoffringes.

Die Modelle kann man bei www.molview.org erstellen.

Alle Tiere und Pflanzen bilden solche Stoffe, die wir als Kohlenhydrate, Eiweiße, Fette, Aromastoffe, Düfte oder Enzyme kennen. In der Erdkruste finden wir Erdöl und Erdgas die „fossilen Kohlenwasserstoffe“. Das sind Stoffgemische aus vielen Kohlenwasserstoffen, deren Bestandteile wir zum Beispiel als Benzin oder Diesel nutzen. Aber auch Medikamente, Kunststoffe und viele weitere Produkte werden aus dem „flüssigen Gold“ -wie das Erdöl genannt wird- hergestellt.

Weiter zu Erdöl

Weiter zu Alkane

Weiter zu Ethen und Ethin

Loading

Natriumhydoxid – Natronlauge

Hydroxide sind meist wasserlösliche Feststoffe, die Basen genannt werden.
Löst man die Hydroxide in Wasser, so entstehen Laugen dieser Feststoffe.
Merke:

Diese Stoffe sind meist ätzend und färben den Indikator UNITEST blau bis violett.
Man sagt, diese Stoffe reagieren „alkalisch“/basisch. Für Basen gilt die Verdünnungsregel, da das Lösen meist stark exotherm verläuft!

„Erst das Wasser, dann die Lauge, sonst hast Du das Zeug im Auge!“
(Hier leicht abgewandelt.)

Natriumhydroxid (NaOH)

Kristall von NaOH

Die wichtigste Base mit einer jährlichen Produktion von 60.000.000 Tonnen ist Natriumhydroxid, ein Grundstoff der chemischen Industrie. Natronlauge ist die in Wasser gelöste Form des Natriumhydroxids, sie wird auch Ätznatron genannt.

Andere Namen dieser Substanz sind Ätznatron oder kaustisches Soda.
Natriumhydroxid ist geruchlos(Vorsicht!) , fest, weiß und stark hygroskopisch (wasserziehend). Die Löslichkeit von NaOH beträgt 1090g pro Liter
Wasser bei 20°C. Achtung! Natriumhydroxid löst sich stark exotherm
in Wasser.

Die Herstellung von Seife ist ebenso wie die Papierherstellung fest an die zerstörende Wirkung von Natronlauge gebunden. Rohrreiniger enthalten ebenfalls einen großen Anteil NaOH. In der Lebensmittelindustrie wird es als Reinigungsmittel für Behälter und Tanks verwendet, da es keimtötend ist. Schälmaschinen für Obst und Gemüse arbeiten mit der gewebsverflüssigenden, ätzenden Substanz. Auch die Färbung von Textilien und das Abbeizen von Holz wird mit Natronlauge durchgeführt. Dem Laugengebäck verleiht die Natronlauge seine typische braune Färbung und den seifigen Geschmack. Keine Angst! Die Natronlauge wird beim Backprozess durch ihre Reaktion mit dem Kohlendioxid der Luft zerstört und damit ungefährlich.

Natronlauge ist ätzend! (Sie zerstört Haut, Haare und menschliches Gewebe.)

Warum man Natronlauge nicht mit Aluminium zusammenbringen sollte:

Video Basen von „Musste wissen“

Video „Brezeln backen“

Video Abbeizen

Video „Jeans färben“

Video Seifenherstellung 1 (Die Base nicht mit Aluminium oder Holz einrühren)

Video Seifenherstellung 2

Mandarinen schälen mit Lauge

Mandarinen schälen (Hier alternativ mit Salzsäure)

Loading

Das Bohr´sche Atommodell – Atombau II

Bild von Arek Socha auf Pixabay

Was wir bisher wissen: (AB Wiederholung/interaktiv)

Recht schnell war nach der Formulierung des Atommodells nach Rutherford klar, dass eine unkontrollierte Bewegung der Elektronen in der Atomhülle zur Katastrophe und damit zur Auslöschung von Materie, wie wir sie kennen, führen würde. Ein Elektron, welches in einen Kern stürzen würde, zöge eine Kernspaltung nach sich, die alles in einer Kettenreaktion vernichten würde. Wir würden nicht existieren.

Hier nun setzt Niels Bohr – ein Schüler Rutherfords – an. Er wählt den für einen Mathematiker typischen Weg und berechnet Kräfte, Wege und Effekte für das System Atom und kommt zu der Erkenntnis, dass die Elektronen sich sehr geordnet und mathematisch exakt um den Kern bewegen müssen. Und sie können nicht alle den gleichen Abstand vom Kern haben. Sie bewegen sich wie die Planeten unseres Sonnensystems um das Zentrum.

Arbeitsblätter zum Thema:

Übung
Übung (Lösung)

Loading

Chemie im Haushalt

Bild von Daniela Dimitrova auf Pixabay

Arbeitsblätter zum Thema:

bathroom-3563272_1280

Um uns herum ist Chemie.
Mehr als 2500 Chemikalien
gehören zu den Bestandteilen
der Haushaltschemie.

previous arrow
next arrow
bathroom-3563272_1280
drill-1839030_1280
antique-1868726_1920
still-2608582_1280
plastic-4043071_1280
detergent-460472_1280
hands-2238235_1280
kid-1241817_1280
cosmetics-2389782_1280
nivea-1495475_1280
ambulance-2166079_1920
medicine-2994788_1280
beverages-3105631_1280
alcoholic-1939418_1280
spray-549085_1280
printer-933098_1280
writing-1209121_1280
poison-36454
previous arrow
next arrow

Im folgenden Video wird noch einmal die Bandbreite der verwendeten Chemikalien deutlich…

sicherer Umgang mit Chemikalien im Haushalt:

Loading

1 33 34 35 36 37 61