Schwefelsäure

Das Schwefelsäuremolekül \( H_2SO_4 \) mit dem zentralen Schwefelatom, umgeben von 4 Sauerstoffatomen zerfällt in Wasser in das aggressive – hoch reaktive – Ion \( H^+ \) , das Wasserstoffion (auch Proton genannt) und das Sulfation \( SO_4^{2-} \) , das typische 2-fach negativ geladene Ion der Schwefelsäuresalze.

Schwefelquelle an einem Kratersee eines Vulkans. Hier bildet sich aus den Oxiden freie Schwefelsäure im Seewasser.

Eigenschaften:

96%ige konzentrierte H2SO4 ist eine klare, ätzende,  farb- und geruchlose, sehr ölige (hochviskose), stark hygroskopische (wasserziehende) Flüssigkeit, die mit Wasser unter starker Wärmeentwicklung mischbar ist. Hier ist wie bei allen Säuren unbedingt die Verdünnungsregel einzuhalten, da es sonst zu gefährlichen Verspritzungen kommt. In Wasser gelöst, existiert die Schwefelsäure in Form ihrer Ionen (H+ )Wasserstoffion und und (SO42– ) Sulfation , in die sie zerfällt(dissoziiert).

Schwefelsäure dissoziiert 2-stufig:

  1. Bildung des Hydrogensulfations

$$ H_2SO_4 \to H^+ + HSO_4^- $$

2. Bildung des Sulfations

$$ HSO_4^- \to H^+ + SO_4^{2-} $$

Vorkommen:

An vulkanischen Seen gibt es schwache Konzentrationen von Schwefelsäure. Dies ist neben Spuren von Schwefelsäure in einigen Insektensekreten das einzige natürliche Vorkommen. Die Schwefelsäure gehört wie die Salpetersäure zu den technischen Säuren.

Bedeutung und Verwendung:

Die Schwefelsäure ist eines der wichtigsten Produkte der chemischen Industrie. Sie wird „Blut der Chemie“ genannt. Die Weltproduktion von Schwefelsäure übersteigt die 140 Millionen-Tonnen-Marke. Das meist verwendete Verfahren, das Kontaktverfahren, nutzt Schwefel und ist eine deutsche Erfindung. Ein großer Teil der Schwefelsäure wird dazu verwendet, andere chemische Produkte herzustellen zum Beispiel mineralische Düngemittel (Ammonium- und Superphosphate), Farbstoffe, Sprengstoffe, Waschmittel und Arzneimittel. Die Schwefelsäure ist ein chemischer Grundstoff.
In der Glas-, Kunstseide- und Kunststoffindustrie, sowie in der Petrochemie und bei Dynamit spielt Schwefelsäure ebenfalls eine große Rolle. Mit ihr kann man zahlreiche andere  Säuren herstellen, zum Beispiel die Phosphorsäure (durch Reaktion mit Calciumphosphat) oder Fluorwasserstoffsäure, die auch Flusssäure genannt wird und als Lösungsmittel dient. 

Konzentrierte Schwefelsäure greift Kunststoffe an und zersetzt Zucker und Holz. So lässt sich auch der Aufbau von Zucker aus Kohlenstoff nachweisen. Die Reaktion mit Holz erfolgt in ähnlicher Weise, dabei kommt des auch zur Schwärzung jedoch nicht zu einer solchen Volumenvergrößerung.

Aber auch kohlenstoffbasierte Kunststoffe können der Schwefelsäure nicht widerstehen.

Loading

Salzsäure – Chlorwasserstoffsäure

Chlorwasserstoffsäure (Trivialname: Salzsäure) entsteht durch das Lösen der Moleküle des gasförmigen Chlorwasserstoffs (HCl) in Wasser . Dabei zerfällt das Molekül HCl in Ionen. Das Wasserstoffion (H+) und das Chloridion (Cl) bilden sich. Es entsteht eine saure Lösung, die immer das Wasserstoffion ( H+ ) enthält.
$$ HCl \to H^+ + Cl^- $$

Salzsäure wird bereits vor 2000 Jahren von Plinius erwähnt und dort mit der Gewinnung von Gold, Silber und einigen Mineralen in Zusammenhang gebracht. Sie ist eine technisch bedeutsame Säure, die in verdünnter Form im Magensaft aller Wirbeltiere vorkommt. Dort liefert sie eine saure Umgebung in der Mikroorganismen abgetötet und Eiweiße denaturiert(zerstört) werden und in der Verdauungsenzyme wie Pepsin optimal arbeiten.

Salzsäure ist eine wichtige Grundchemikalie der Industrie. Aus ihr werden viele andere Stoffe wie Eisen(III)-chlorid ), Calciumchlorid , Nickel(II)-chlorid und weitere Stoffe für die Galvanik und Batterieproduktion hergestellt. Sie wird in der Metallurgie für die Aufarbeitung von Erzen ebenso benötigt wie für das Ätzen , Beizen -besonders von Stahl – und Löten . Auch bei der Entfernung von Kalk und Mörtelresten im Bauwesen spielt Salzsäure eine zentrale Rolle.

gebeizt
previous arrow
next arrow

Alle Bilder stammen von www.pixabay.com

Entstehung von Salzsäure:

507 Liter – das sind 815g – lösen sich begierig in einem einzigen Liter Wasser (bei 0°C) . Damit entsteht eine konzentrierte (rauchende) Salzsäure von 42% HCl Gehalt. Bei 20°C lösen sich noch 720g HCl in einem Liter Wasser.

Das begierige Auflösen in Wasser erzeugt im Rundkolben mit dem Chlorwasserstoffgas einen Unterdruck, der den Effekt des hereinströmenden Wassers zur Folge hat.

Im Labor wird diese stechend riechende Säure durch die Reaktion von Natriumchlorid(Kochsalz) mit Schwefelsäure gewonnen. Diese Reaktion ist nach ihrem Entdecker J.R. Glauber benannt.

Dazu wird hier Schwefelsäure in einer Glas mit Natriumchlorid -dem Salz der Salzsäure – gegeben. Das entstehende Gas wird in wässrige Unitest-Indikatorlösung eingeleitet. Die Rotfärbung zeigt an, dass sich das eingeleitete Gas mit dem Wasser zu einer Säure verbunden hat. Die stärkere Schwefelsäure hat das schwächere Salz der Salzsäure verdrängt!

Salzsäure ist eine ätzende, elektrisch leitende, stechend riechende Flüssigkeit, die den Indikator UNITEST rot färbt und mit unedlen Metallen reagiert.

Bei dieser Reaktion entstehen gasförmiger Wasserstoff und das jeweilige Chlorid, das Salz der Salzsäure. Magnesiumchlorid, Aluminiumchlorid, Zinkchlorid und Eisenchlorid. Gold und Silber reagieren nicht mit dieser Salzsäure.

$$ Mg + 2 HCl \to H_2 + MgCl_2 $$
$$ 2 Al + 6 HCl \to 3 H_2 + 2 AlCl_3 $$
$$ Zn + 2 HCl \to H_2 + ZnCl_2 $$
$$ Fe + 2 HCl \to H_2 + FeCl_2 $$

Loading

Die REDOX-Reaktion

Laufen Oxidation und Reduktion in einem System gleichzeitig ab, so nennt man diesen Prozess eine
REDuktions-OXidations –Reaktion oder kurz REDOX –Reaktion.

Voraussetzung ist, es gibt ein Oxid und einen Hilfsstoff, der den Sauerstoff des Oxids aufnehmen kann. So ein Stoff hilft, das Oxid zu reduzieren, er ist ein Reduktionsmittel und wird bei dem Prozess selbst oxidiert. Das Oxid selber ist also ein Oxidationsmittel.

Bei der RED-OX-Reaktion wird ein OXID reduziert und ein Hilfsstoff oxidiert.

Hier wird Eisenoxid durch Aluminium reduziert. Es entsteht Eisen.
Das Aluminium nimmt dabei den Sauerstoff auf und wird zu Aluminiumoxid oxidiert.

Hans GoldschmidtThermitverfahren

Die Versuche des Herrn Hans Goldschmidt zu Redox-Prozessen führten vor über 100 Jahren zu neuen Erkenntnissen in der Metallurgie . Dabei wurden Oxide von stark nachgefragten Metallen, wie Chrom, Mangan und dem Halbmetall Silizium in einer Hochtemperatur-Reaktion aus ihren Oxiden hergestellt.

So stellte Herr Goldschmidt ein Verfahren vor, mit dem es möglich sein sollte, eine gebrochene Eisenbahnschiene innerhalb weniger Arbeitsstunden zu schweißen. Für damalige Verhältnisse undenkbar, da der Austausch der Schiene Tage dauerte und zum „Schweißen“ flüssiger Stahl – also 1800°C heiß – vor Ort sein müsste. Eine Demonstration des Goldschmidtverfahrens fand weltweite Aufmerksamkeit.

Heute wird dieses Verfahren – das aluminothermische Schweißenweltweit eingesetzt, da es immer noch die einfachste Art ist, flüssigen Stahl in kleinen Portionen an jedem Ort der Welt herzustellen um Schienenstöße miteinander zu verbinden und Reparaturen durchzuführen.

Der Schienenstrang wird von einer Form umgeben und vorgewärmt. Dann wird das Reaktionsgefäß mit dem Eisenoxid- Aluminium – Gemisch aufgesetzt. Die Reaktion des Gemisches wird mit einer Zündkirsche aktiviert und läuft dann stark exotherm von selbst ab. Die Schlacke – das aluminiumoxidhaltige Nebenprodukt – läuft in die seitlichen Schalen. Später wird die Gussform entfernt und die Bruchstelle entgratet.

Weiter zur Eisengewinnung durch den Hochofenprozess…

REDOX-Reaktion von Kupferoxid + Kohlenstoff

Loading

Die stille Oxidation – Rosten

Materialien, die den Umwelteinflüssen ausgesetzt sind, verwittern. Die stille, langsame Reaktion mit dem Sauerstoff der Luft und der Hilfe von Wasser in Form von Regen, Schnee und Eis, Kälte und Hitze betrifft Stoffe, wie Metalle, Glas, Kunststoffe, Farben und Lacke, Textilien und viele mehr.

Bei den Metallen sprechen wir vom „Rosten“ oder dem „Korrodieren“.
Der Begriff „Korrosion“ ist jedoch international auch mit „corrosive“ – zerstörend oder ätzend belegt.

Rost entsteht, wenn Metall mit Sauerstoff (und Wasser) in Kontakt kommt. Besonders Eisen ist anfällig für Rost, der es schwächt und unansehnlich macht. Um Haushaltsgegenstände, Werkzeuge und Gebäudeteile vor Rost zu schützen, gibt es verschiedene Methoden, die auch zu Hause mit einfachen Mitteln und Haushaltschemikalien angewendet werden können.

1. Lackieren oder Beschichten

Eine einfache Möglichkeit, Metalle vor Rost zu schützen, ist das Lackieren oder Beschichten. Du kannst Metalle wie Fahrradrahmen, Geländer oder Werkzeuge mit Rostschutzfarbe behandeln. Diese bildet eine Barriere gegen Feuchtigkeit und Sauerstoff. Besonders praktisch sind Sprühdosen, die du leicht auftragen kannst. Vor dem Lackieren solltest du die Metalloberfläche sauber machen, um sicherzustellen, dass die Farbe gut haftet.

2. Ölen und Fetten

Eine weitere Methode ist das Einölen oder Einfetten von Metallteilen. Öle wie Nähmaschinenöl, oder sogar Haushaltsfette wie Vaseline, können eine schützende Schicht auf der Metalloberfläche bilden. Diese Methode eignet sich besonders für Werkzeuge und Geräte, die oft benutzt werden, wie Schraubenschlüssel, Gartenwerkzeuge oder Türscharniere. Das Öl verhindert, dass Feuchtigkeit an das Metall gelangt.

Anwendung:

  • Wische das Metall mit einem Tuch ab, um Schmutz zu entfernen.
  • Trage eine dünne Schicht Öl oder Fett auf das Metall auf.
  • Wiederhole die Anwendung regelmäßig, um den Schutz aufrechtzuerhalten.

3. Zitrone, Essig, Backpulver und Co(la)

Essig und Backpulver sind nicht nur nützliche Haushaltshelfer, sondern können auch bei der Entfernung von Rost und dem Schutz von Metallgegenständen helfen. Essig oder Zitronensäure aber auch die Phosphorsäure in der Cola reagieren mit dem Rost und lösen ihn auf, während Backpulver neutralisierend wirkt und Oberflächen reinigt.

Anwendung:

  • Weiche kleinere, verrostete Gegenstände in Essig ein und lasse sie einige Stunden stehen.
  • Bei größeren Flächen kannst du ein Tuch in Essig tränken und es auf den Rost legen.
  • Verwende anschließend eine Paste aus Backpulver und Wasser, um die restlichen Rostspuren zu entfernen und die Oberfläche zu glätten.

4. Beschichtungen mit Zink, Emaille oder Gummi

Eine Methode, die du vielleicht von großen Metallteilen wie Zäunen oder Blechdächern kennst, ist das Verzinken. Dabei wird eine dünne Schicht Zink auf das Metall aufgetragen, die es vor Rost schützt. Diese Methode wird allerdings meist in Werkstätten durchgeführt und erfordert spezielle Geräte.
Emaille ist eine dünne Porzellanschicht, die auf Metallgegenstände gebracht wird. Auch die Gummierung von Werkzeugen und Drähten – wie bei Zäunen- dient dem Rostschutz.

5. Rostschutz durch Lagerung

Nicht alle Methoden müssen chemisch sein. Du kannst Rost auch verhindern, indem du Metalle trocken lagerst. Feuchtigkeit ist der größte Feind von Metall. Daher sollten Werkzeuge und Geräte nach dem Gebrauch abgewischt und an einem trockenen Ort aufbewahrt werden. In feuchten Räumen wie Kellern kannst du Luftentfeuchter verwenden, um die Luftfeuchtigkeit zu senken.


Zusammenfassung: Um Haushaltsgegenstände, Werkzeuge und Geräte vor Rost zu schützen, gibt es viele Methoden, die du zu Hause anwenden kannst. Lacke, Öle, Essig und Backpulver sind einfache Mittel, um Rost zu verhindern oder zu entfernen. Am wichtigsten ist jedoch, Metalle trocken zu halten, da feuchte Luft die Hauptursache für Rost ist.

Loading

Oxidation

…ist eine Art der chemischen Reaktion, bei der ein Stoff mit Sauerstoff reagiert.

Die Oxidation wird in der Chemie auch als Reaktion mit Elektronenabgabe definiert. Dies setzt jedoch die Kenntnis vom Verhalten der Elemente, Ionen oder Moleküle voraus, Stabilität über die Aufnahme oder Abgabe von Elementarteilchen der Außenschale zu regeln.

Lass uns zunächst die Oxidation als Reaktion der Elemente (Metalle/Nichtmetalle) mit Sauerstoff verstehen.

Element + Sauerstoff —> Oxid des Elements

Schwefel + Sauerstoff —> Schwefeloxid
Eisen + Sauerstoff —-> Eisenoxid
Blei + Sauerstoff —-> Bleioxid

Es gibt neben Sauerstoff noch einige Elemente , die nicht auf einfachem Wege oxidiert werden können und sind die Edelgase und das Metall Gold.
Willst Du mehr wissen?
Herstellung von Goldoxid

Es bilden sich Oxide!

Wir unterscheiden die durch Verbrennen erzwungene schnelle Oxidation, und die freiwillig ablaufende langsame Oxidation (stille Oxidation), die man auch Korrosion, Rosten oder Verwittern nennt.

Verbrennt man Magnesium an der Luft, so brennt dies mit einer grellen Lichterscheinung und großer Wärmeentwicklung.

Da Sauerstoff molekular (2-atomig) vorkommt, wird pro Sauerstoffatom ein Magnesiumatom verwendet.
Das ergibt dann auch 2 Magnesiumoxid-Baueinheiten.

Das weiße Reaktionsprodukt heißt Magnesiumoxid.
Es wird in der Bauindustrie als Bindemittel für Schäume eingesetzt und ist als sogenannter „Säureregulator“ sogar in Lebensmitteln (E 530) als Zusatzstoff (E-Stoff) zugelassen. Auf Grund seines hohen Schmelzpunktes (2800°C) wird es zur Herstellung von feuerfesten Steinen benutzt, die als Auskleidung in Öfen von Laboren oder in Schmelzpfannen bei der Stahlherstellung benutzt werden.

weitere Oxidationen:

Loading

1 12 13 14 15 16 25