Schwefelsäure

Das Schwefelsäuremolekül \( H_2SO_4 \) mit dem zentralen Schwefelatom, umgeben von 4 Sauerstoffatomen zerfällt in Wasser in das aggressive – hoch reaktive – Ion \( H^+ \) , das Wasserstoffion (auch Proton genannt) und das Sulfation \( SO_4^{2-} \) , das typische 2-fach negativ geladene Ion der Schwefelsäuresalze.

Schwefelquelle an einem Kratersee eines Vulkans. Hier bildet sich aus den Oxiden freie Schwefelsäure im Seewasser.

Eigenschaften:

96%ige konzentrierte H2SO4 ist eine klare, ätzende,  farb- und geruchlose, sehr ölige (hochviskose), stark hygroskopische (wasserziehende) Flüssigkeit, die mit Wasser unter starker Wärmeentwicklung mischbar ist. Hier ist wie bei allen Säuren unbedingt die Verdünnungsregel einzuhalten, da es sonst zu gefährlichen Verspritzungen kommt. In Wasser gelöst, existiert die Schwefelsäure in Form ihrer Ionen (H+ )Wasserstoffion und und (SO42– ) Sulfation , in die sie zerfällt(dissoziiert).

Schwefelsäure dissoziiert 2-stufig:

  1. Bildung des Hydrogensulfations

$$ H_2SO_4 \to H^+ + HSO_4^- $$

2. Bildung des Sulfations

$$ HSO_4^- \to H^+ + SO_4^{2-} $$

Vorkommen:

An vulkanischen Seen gibt es schwache Konzentrationen von Schwefelsäure. Dies ist neben Spuren von Schwefelsäure in einigen Insektensekreten das einzige natürliche Vorkommen. Die Schwefelsäure gehört wie die Salpetersäure zu den technischen Säuren.

Bedeutung und Verwendung:

Die Schwefelsäure ist eines der wichtigsten Produkte der chemischen Industrie. Sie wird „Blut der Chemie“ genannt. Die Weltproduktion von Schwefelsäure übersteigt die 140 Millionen-Tonnen-Marke. Das meist verwendete Verfahren, das Kontaktverfahren, nutzt Schwefel und ist eine deutsche Erfindung. Ein großer Teil der Schwefelsäure wird dazu verwendet, andere chemische Produkte herzustellen zum Beispiel mineralische Düngemittel (Ammonium- und Superphosphate), Farbstoffe, Sprengstoffe, Waschmittel und Arzneimittel. Die Schwefelsäure ist ein chemischer Grundstoff.
In der Glas-, Kunstseide- und Kunststoffindustrie, sowie in der Petrochemie und bei Dynamit spielt Schwefelsäure ebenfalls eine große Rolle. Mit ihr kann man zahlreiche andere  Säuren herstellen, zum Beispiel die Phosphorsäure (durch Reaktion mit Calciumphosphat) oder Fluorwasserstoffsäure, die auch Flusssäure genannt wird und als Lösungsmittel dient. 

Konzentrierte Schwefelsäure greift Kunststoffe an und zersetzt Zucker und Holz. So lässt sich auch der Aufbau von Zucker aus Kohlenstoff nachweisen. Die Reaktion mit Holz erfolgt in ähnlicher Weise, dabei kommt des auch zur Schwärzung jedoch nicht zu einer solchen Volumenvergrößerung.

Aber auch kohlenstoffbasierte Kunststoffe können der Schwefelsäure nicht widerstehen.

Loading

Salzsäure – Chlorwasserstoffsäure

Chlorwasserstoffsäure (Trivialname: Salzsäure) entsteht durch das Lösen der Moleküle des gasförmigen Chlorwasserstoffs (HCl) in Wasser . Dabei zerfällt das Molekül HCl in Ionen. Das Wasserstoffion (H+) und das Chloridion (Cl) bilden sich. Es entsteht eine saure Lösung, die immer das Wasserstoffion ( H+ ) enthält.
$$ HCl \to H^+ + Cl^- $$

Salzsäure wird bereits vor 2000 Jahren von Plinius erwähnt und dort mit der Gewinnung von Gold, Silber und einigen Mineralen in Zusammenhang gebracht. Sie ist eine technisch bedeutsame Säure, die in verdünnter Form im Magensaft aller Wirbeltiere vorkommt. Dort liefert sie eine saure Umgebung in der Mikroorganismen abgetötet und Eiweiße denaturiert(zerstört) werden und in der Verdauungsenzyme wie Pepsin optimal arbeiten.

Salzsäure ist eine wichtige Grundchemikalie der Industrie. Aus ihr werden viele andere Stoffe wie Eisen(III)-chlorid ), Calciumchlorid , Nickel(II)-chlorid und weitere Stoffe für die Galvanik und Batterieproduktion hergestellt. Sie wird in der Metallurgie für die Aufarbeitung von Erzen ebenso benötigt wie für das Ätzen , Beizen -besonders von Stahl – und Löten . Auch bei der Entfernung von Kalk und Mörtelresten im Bauwesen spielt Salzsäure eine zentrale Rolle.

gebeizt
previous arrow
next arrow

Alle Bilder stammen von www.pixabay.com

Entstehung von Salzsäure:

507 Liter – das sind 815g – lösen sich begierig in einem einzigen Liter Wasser (bei 0°C) . Damit entsteht eine konzentrierte (rauchende) Salzsäure von 42% HCl Gehalt. Bei 20°C lösen sich noch 720g HCl in einem Liter Wasser.

Das begierige Auflösen in Wasser erzeugt im Rundkolben mit dem Chlorwasserstoffgas einen Unterdruck, der den Effekt des hereinströmenden Wassers zur Folge hat.

Im Labor wird diese stechend riechende Säure durch die Reaktion von Natriumchlorid(Kochsalz) mit Schwefelsäure gewonnen. Diese Reaktion ist nach ihrem Entdecker J.R. Glauber benannt.

Dazu wird hier Schwefelsäure in einer Glas mit Natriumchlorid -dem Salz der Salzsäure – gegeben. Das entstehende Gas wird in wässrige Unitest-Indikatorlösung eingeleitet. Die Rotfärbung zeigt an, dass sich das eingeleitete Gas mit dem Wasser zu einer Säure verbunden hat. Die stärkere Schwefelsäure hat das schwächere Salz der Salzsäure verdrängt!

Salzsäure ist eine ätzende, elektrisch leitende, stechend riechende Flüssigkeit, die den Indikator UNITEST rot färbt und mit unedlen Metallen reagiert.

Bei dieser Reaktion entstehen gasförmiger Wasserstoff und das jeweilige Chlorid, das Salz der Salzsäure. Magnesiumchlorid, Aluminiumchlorid, Zinkchlorid und Eisenchlorid. Gold und Silber reagieren nicht mit dieser Salzsäure.

$$ Mg + 2 HCl \to H_2 + MgCl_2 $$
$$ 2 Al + 6 HCl \to 3 H_2 + 2 AlCl_3 $$
$$ Zn + 2 HCl \to H_2 + ZnCl_2 $$
$$ Fe + 2 HCl \to H_2 + FeCl_2 $$

Loading

Die Reaktionswärme – exotherm / endotherm

Bei jeder chemischen Reaktion finden Prozesse der Energieumwandlung statt. Da jede Substanz ein gewisses Potential hat, das chemische Energie genannt wird, können bei Prozessen Wärme, Licht, elektrischer Strom oder Bewegungsenergie in Erscheinung treten.

exotherm

Prozesse, die mehr Energie liefern(abgeben)
als sie zugeführt bekommen, heißen „exotherm„.

Die Verbrennungsprozesse von Holz, Kohle, Benzin und Diesel, Heizöl oder Wasserstoff sind exotherme Prozesse.
Auch das Lösen von Natriumhydroxid (NaOH) in Wasser oder das Verdünnen von Säuren verlaufen unter Erwärmung des Lösungsmittels.

Anwendungsbeispiel:

Bildquelle www.hotcan.com

Video zu den heißen Dosen

endotherm


Prozesse, die mehr Energie zugeführt bekommen,
als sie abgeben heißen „endotherm„.

Der berühmteste endotherme Prozess ist nur aktiv, wenn die Energiequelle Sonnenlicht verfügbar ist. Nachts stoppt der Prozess. Die Pflanzenwelt unseres Planeten nutzt die Photosynthese um aus Kohlendioxid und Wasser den Energiereichen Stoff Glucose(Traubenzucker) herzustellen und liefert das Nebenprodukt Sauerstoff. Lebensnotwendig für die Tierwelt.

Ein Salz, welches beim Lösen in 20°C warmem Wasser dem Lösungsmittel die Wärme entzieht, ist zum Beispiel Kaliumnitrat. Das Wasser kühlt bei Zugabe des Salzes ab. Die ersten Verfahren Erzeugung von Kälte waren die sogenannten Kältemischungen, bei denen man solche Salze mit Eis,Schnee oder Wasser mischte. So konnte man mit den unterkühlten Flüssigkeiten andere Gegenstände kühlen oder auch Wasser gefrieren. Die Idee des Kühlschrankes war nur noch einen Schritt entfernt.

Beispiel für eine endotherme Reaktion:

weitere Versuche zu „exotherm“ und „endotherm„:

Loading

1 32 33 34 35 36 56