Gruppe von Molekülen, die aus Ringen oder Ketten von Kohlenstoff mit –OH Gruppen (Hydroxylgruppen) und Sauerstoffbrücken –O– bestehen. Nährstoffe, die exotherm zu Kohlendioxid und Wasser verbrennen und Reaktionswärme liefern.

Glucose

Unterarten:

Einfachzucker Glucose $C_6H_{12}O_6$

entsteht in Pflanzen durch Photosynthese

(Früchte / Blätter)

Zweifachzucker Saccharose

Rohrzucker Rübenzucker

 $C_{12}H_{22}O_{11}$

Speicherstoff stellt durch

Vielfachzucker

Stärke

 $(C_6H_{10}O_5)_n$

Spaltung Glucose bereit

Allgemeine Eigenschaften:

- meist farblos/weiße Feststoffe
- geruchlos
- löslich in Wasser (außer Vielfachzucker)
- leicht zu oxidieren (... → Carbonsäuren → $CO_2 + H_2O$)

NH_2

Adenosintriphosphat (ATP)

Verwendung im menschlichen Körper

- Aufnahme als Stärke (Kartoffeln, Nudeln, Brot, Reis)
- Spaltung zu Glucose (Amylaseausschüttung in Mund und Bauchspeicheldrüse)
- Übergang im Dünndarm ins Blut →Transport → Nutzung (geregelter Zuckergehalt im Blut, Insulin senkt, Glukagon hebt)
- Nutzung: Energiegewinnung durch Oxidation (Umwandlung in ATP, Speicherung) Kohlenhydrat + Sauerstoff — → Kohlendioxid + Wasser

Amylase(Enzym)

Enzyme sind biologische Riesenmoleküle, die als Katalysatoren wirken und chemische Reaktionen beschleunigen können. Bis auf eine Ausnahme sind Enzyme Proteine.

Grundwissen:

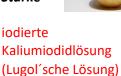
Steckbriefe von Glucose, Fructose, Saccharose und Stärke

Nachweise:

Glucose

Nachweismittel: Fehling'sche Lösung I+II (je 1ml Lsg. I + Lsg. II)

→Mischung ergibt Tiefblau


Durchführung: Fehlingsche Lösungen zu

wässriger Probe

Gemisch vorsichtig erwärmen!

Effekt bei

Vorhandensein: ziegelroter Niederschlag Stärke

Betropfen der Probe mit 5 Tr. KI-Lösung

violett/schwarz Färbung